SİERPİNSKİ ÜÇGENİ


Polonyalı matematikçi VACLAV SİERPİNSKİ (1882-1969) 1916 yılında, daha sonra kendi adıyla anılan ve Sierpinski Üçgeni veya Sierpinski Şapkası (Sierpinski Gasket) veya Sierpinski Kalburu (Sierpinski Sieve) da denen bir fraktal tanıttı. Bu şeklin 12.yüzyılda bir kilisede süsleme olarak çizili olduğu da biliniyor.

Örneğin, üçgen gibi alışılmış bir geometrik şekil alalım ve üzerinde daha karışık bir yeni şekil elde edecek biçimde belirli bir işlem yapalım. Bu işlemi, aynen uygulamaya devam ettikçe daha karışık bir şekil elde ederiz. Bu işlemi tekrar tekrar uygulamaya devam edelim. O zaman, yukarıda şekli görünen ve Sierpinski Üçgeni denen meşhur fraktal elde edilir.

I. Adım : Kenar uzunluğu 2 birim olan bir eşkenar üçgen çizelim. Her kenarının orta noktalarını işaretleyelim ve bu orta noktaları birleştirelim. Böylece dört tane yeni eşkenar üçgen elde etmiş oluruz. Merkezde kalan üçgeni karalayalım ve sonra da merkezdekini kesip atalım.

II. Adım: Kenar uzunluğu 4 birim olan bir eşkenar üçgen çizelim. Kenarlarının orta noktalarını birleştirelim. Elde edilen dört yeni eşkenar üçgenden merkezdekini birinci adımda olduğu gibi karalayalım. Sonra da köşelerde yer alan ve karalanmamış olan üç adet üçgenin her birini aynı işleme tabi tutalım.

III. Adım : Kenar uzunluğu 8 birim olan bir eşkenar üçgen çizelim. Yukarıdaki işlemleri aynen tekrar ederek Sierpinski Üçgenini tamamlayalım. Benzer şekilde boyama işini de yapalım. Boyanmış olanları kesip çıkaralım. Böylece 1 adet büyük, 3 adet ortanca ve 9 adet küçük ve boyanmış eşkenar Üçgene sahip olacağız.

IV. Adım: Bir duvar kağıdından bu işi yapalım. Yukarıdaki adımları sırasıyla takip ederek Sierpinski Üçgenini tamamlayalım.

Sierpinski Üçgeni pür matematik alanında bir zihinsel üründür. Benzer şekilleri deniz kabuğunda ve hücre çoğalmalarında da görebiliriz.

Bu fraktalın Boyutu: ve olduğundan boyut formülüne göre dır.

PASCAL ÜÇGENİ VE SİERPİNSKİ ÜÇGENİ ARASINDAKİ İLİŞKİ

Blaise Pascal'ın sayılara ait üçgen modelini hatırlayınız. Bu üçgeni yukarıdaki şekilde görüyorsunuz. Bu üçgene Pascal Üçgeni denir.

Pascal üçgenindeki küçük üçgenlerden içinde çift sayı bulunanları boyayalım. Ortaya çıkan Pascal Üçgenini yukarıdaki üçgenle karşılaştıralım. Böylece Pascal Üçgeninden Sierpinski Üçgenini elde etmiş oluruz.